Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
RSC Adv ; 11(62): 39455-39466, 2021 Dec 06.
Article in English | MEDLINE | ID: covidwho-1585746

ABSTRACT

An investigation has been carried out on natural products from dolabellane derivatives to understand their potential in inhibiting the SARS-CoV-2 main protease (3CLpro) using an in silico approach. Inhibition of the 3CLpro enzyme is a promising target in stopping the replication of the SARS-CoV-2 virus through inhibition of the subsite binding pocket. The redocking process aims to determine the 3CLpro active sites. The redocking requirement showed a good pose with an RMSD value of 1.39 Å. The combination of molecular docking and MD simulation shows the results of DD13 as a candidate which had a good binding affinity (kcal mol-1) to inhibit the 3CLpro enzyme activity. Prediction of binding free energy (kcal mol-1) of DD13 using the Molecular Mechanics-Poisson Boltzmann/Generalized Born Surface Area (MM-PB/GBSA) approach shows the results ΔG bind(MM-GBSA): -52.33 ± 0.34 and ΔG bind(MM-PBSA): -43.52 ± 0.42. The key residues responsible for the inhibition mechanism are Hie41, Ser46, Met49, Asn142, Cys145, Hie163, Met165, and Gln189. Additionally, pharmacokinetic prediction recommended that DD13 had promising criteria as a drug candidate. The results demonstrated in this study provide theoretical information to obtain a potential inhibitor against the SARS-CoV-2 main protease.

2.
PLoS One ; 16(6): e0252302, 2021.
Article in English | MEDLINE | ID: covidwho-1278172

ABSTRACT

A potent therapy for the infectious coronavirus disease COVID-19 is urgently required with, at the time of writing, research in this area still ongoing. This study aims to evaluate the in vitro anti-viral activities of combinations of certain commercially available drugs that have recently formed part of COVID-19 therapy. Dual combinatory drugs, namely; Lopinavir-Ritonavir (LOPIRITO)-Clarithromycin (CLA), LOPIRITO-Azithromycin (AZI), LOPIRITO-Doxycycline (DOXY), Hydroxychloroquine (HCQ)-AZI, HCQ-DOXY, Favipiravir (FAVI)-AZI, HCQ-FAVI, and HCQ-LOPIRITO, were prepared. These drugs were mixed at specific ratios and evaluated for their safe use based on the cytotoxicity concentration (CC50) values of human umbilical cord mesenchymal stem cells. The anti-viral efficacy of these combinations in relation to Vero cells infected with SARS-CoV-2 virus isolated from a patient in Universitas Airlangga hospital, Surabaya, Indonesia and evaluated for IC50 24, 48, and 72 hours after viral inoculation was subsequently determined. Observation of the viral load in qRT-PCR was undertaken, the results of which indicated the absence of high levels of cytotoxicity in any samples and that dual combinatory drugs produced lower cytotoxicity than single drugs. In addition, these combinations demonstrated considerable effectiveness in reducing the copy number of the virus at 48 and 72 hours, while even at 24 hours, post-drug incubation resulted in low IC50 values. Most combination drugs reduced pro-inflammatory markers, i.e. IL-6 and TNF-α, while increasing the anti-inflammatory response of IL-10. According to these results, the descending order of effective dual combinatory drugs is one of LOPIRITO-AZI>LOPIRITO-DOXY>HCQ-AZI>HCQ-FAVI>LOPIRITO-CLA>HCQ-DOX. It can be suggested that dual combinatory drugs, e.g. LOPIRITO-AZI, can potentially be used in the treatment of COVID-19 infectious diseases.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Hydroxychloroquine/pharmacology , SARS-CoV-2/drug effects , Animals , Anti-Bacterial Agents/therapeutic use , Antiviral Agents/therapeutic use , COVID-19/virology , Cell Survival/drug effects , Cells, Cultured , Chlorocebus aethiops , Drug Combinations , Hospitalization , Host-Pathogen Interactions/drug effects , Humans , Hydroxychloroquine/therapeutic use , Indonesia , Inhibitory Concentration 50 , Inpatients , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Time Factors , Vero Cells , Viral Load/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL